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What is Optimization?

Example: Minimize prediction error

“objective” or “loss” function

Underneath most machine learning problems is an optimization problem
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Typical Deep Learning Formulation

mean squared error, averaging over the examples !(#), !(&), … , !(()

“predictor” function: the neural network
Where ) are trainable parameters

min)
1
./01#

(
[ℎ !(0); ) − 6(0)]&

Correct label for each example

Recall: ℎ has that special layered form, such as: 

ℎ !; ) = 8(9 & 8 9 # ! + ; # + ; & )



Argonne Leadership Computing Facility4

Types of Optimization 
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• Linear

• Quadratic

• Convex

• Have 2nd derivs

• Have gradients

• General

More time on formulating 
problem to fit these categories

More time on optimization algorithm

Roughly…
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Differentiable Optimization
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• Linear

• Quadratic

• Convex

• Have 2nd derivs

• Have gradients

• General

Deep learning usually here
• Objective function non-convex
• So local minima problematic

• Technically have 2nd derivatives, but 
too expensive
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Differentiable Optimization
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• Linear

• Quadratic

• Convex

• Have 2nd derivs

• Have gradients

• General

Deep learning usually here

• So typically use stochastic gradient 

descent

• In the optimization zone of: “our 

problem doesn’t have great 

properties, so spend time on the 

difficult optimization” 
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Choosing form of neural network
• Details of ℎ "; $ , i.e.

• Choosing “neural architecture” or “function family”

ℎ "; $ = %(& ' % & ( " + * ( + * ' )

Cons of deep learning:
• Non-convex, so can be hard to find best parameters
• Can be overly flexible/complicated

Pros of deep learning:
• Universal approximation theorem: can approximate “any” function arbitrarily well
• Hierarchical structure saves parameters

Good parameters might exist, 
but do you find them?
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Bias vs. Variance

High variance

overfitting

High bias Low bias, low variance

underfitting balanced

A major theme of machine learning!
Pictures from Kyle Felker, produced from code in scikit-learn documentation
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To Check for Overfitting vs. Underfitting

Rule #1: MUST hold out some data and check error at very end

“test” data

Common:
• Randomly split data 70% training, 20% validation, 10% test
• Use training data to fit parameters of network 
• Use validation data to compare options (like learning rate)
• Report test error at end of project

If you peek, not really reporting generalization error!
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Choosing Hyperparameters
• Ex: learning rate, batch size, number of layers
• More at “Hyper-parameter Optimization” talk
• Common to try variety and choose “best” combination

• Typically: lowest validation error in fixed number of epochs
• Or fixed time…
• If targeting particular error, could explore best time-to-solution 

DO NOT consult your test error!!
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To Check for Overfitting vs. Underfitting

If training error too high → underfitting

If training error << validation error → overfitting

Monitor training and validation error…
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Extrapolation
Rule #2: DO NOT extrapolate to inputs outside literal training domain

mathematical sense of word

Cautionary example: Learn f(x) = x, for 1-D x
Noiseless training data on [-1, 1] 
Trained tiny 6-parameter network, can write down perfect weights
Excellent val. error in [-1, 1] does not lead to extrapolation ability outside [-1, 1]

https://arxiv.org/abs/1911.02710
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Gradient Descent

Picture source: Divakar Kapil in “Stochastic vs Batch Gradient Descent”
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Types of Gradient Descent
(in the context of summing a loss over examples)

Stochastic GD: use one example per step

Batch GD: use all examples every step

Mini-batch GD: use a subset each step

One epoch: use each example once
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Types of Gradient Descent

Stochastic GD: use one example per step

Batch GD: use all examples every step

Mini-batch GD: use a subset each step

Each step is accurate but expensive

Each step is noisy but fast

Happy medium?

Very common in deep 

learning, but often call 

it SGD

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3 

Even better: shuffle data 

between epochs so mini-

batches change



Argonne Leadership Computing Facility16

Learning Rate

Learning rate is “step size”
• Too big: overshoot
• Too small: very slow 
• (But might want to escape local 

minima)

Li, et al. “Visualizing the Loss Landscape of Neural Nets” NeurIPS 2018

http://cs231n.github.io/neural-networks-3/ 
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Batch Size

Mini-batch GD: use a subset each step

batch size

Choosing a batch size:
• Time per epoch

• large often fast due to vectorization
• But accuracy!

• Too small can be noisy steps
• Too big can be get stuck in local minima



Argonne Leadership Computing Facility18

Convergence
Monitor training & validation error

If validation error plateaued (or getting worse!) →

• Often “early stopping” (save best so far)

• Or tweak learning rate

• But might want to wait: could jump into different local minimum

https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-
machine-learning-820b091dc42

Validation error

https://stats.stackexchange.com/questions/257843/con
stant-error-during-training
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Variant: Adam Optimizer
Popular improvement on GD: Adam optimizer
• Separate learning rate for each weight
• Momentum: uses moving average of the gradient
• Also incorporates squared gradients

Cool exploration/visualization of momentum: https://distill.pub/2017/momentum/

(For those familiar: Adam combines the best properties of AdaGrad, momentum, and RMSProp)
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Regularization
• Common way to avoid overfitting: regularization
• Most common: L2 regularization

error regularization

balance

Roughly: big coefficients/weights correspond to large variation
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Dropout

TensorFlow for Deep Learning by Bharath Ramsundar; Reza Bosagh Zadeh Figure 4-8 

Probability keep node = p
• Apply during training time 

only 
• Can define layer-by- layer 
• Scale the surviving 

activations by 1/p 
• Network has to be 

“resilient”

Adapted from Kyle Felker’s slide
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Summary
• Deep learning is an optimization problem
• Choices affect

• Can the neural network represent your data?
• Can the optimization algorithm find that good representation? 

• More on efficiency this afternoon…
• Does that representation generalize? 

Two rules!
Rule #1: MUST hold out some data and check error at very end

Rule #2: DO NOT extrapolate to inputs outside literal training domain

mathematical sense of word
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Thank You!
Any questions?

Thinking ahead to this afternoon: how would you parallelize gradient descent?


